L04 Asymptotically efficient estimators

1. Efficient estimators

(1) Efficient estimators

 $\widehat{\theta} \text{ is an efficient estimator for } \theta \iff E_{\theta}(\widehat{\theta}) = \theta \text{ and } \mathrm{Cov}_{\theta}(\widehat{\theta}) = \mathrm{CRLB}(\theta) \\ \implies \widehat{\theta} \text{ is the best one in } \mathrm{UE}(\theta) \text{ by MSCPE risk.}$

Comment: $E_{\theta}(\widehat{\theta})$ and $Cov_{\theta}(\widehat{\theta})$ are functions of θ . $E_{\theta}(\widehat{\theta}) = \theta$ and $Cov_{\theta}(\widehat{\theta}) = CRLB(\theta)$ mean $E_{\theta}(\hat{\theta}) \equiv \theta$ and $Cov_{\theta}(\hat{\theta}) \equiv CRLB(\theta)$ for all θ .

(2) Efficiency (function) For $\widehat{\theta} \in R^1$, $e_{\widehat{\theta}}(\theta) = \frac{\mathrm{CRLB}(\theta)}{\mathrm{var}_{\theta}(\widehat{\theta})}$ is the efficiency function for $\widehat{\theta}$. $0 < e_{\widehat{\theta}}(\theta) \le 1$ and

$$e_{\widehat{\theta}}(\theta) = 1 \iff \operatorname{var}_{\theta}(\widehat{\theta}) = \operatorname{CRLB}(\theta).$$

So $\widehat{\theta}$ is an efficient estimator for $\theta \in R$ iff $\widehat{\theta} \in UE(\theta)$ with efficiency 1.

(3) Relative efficiecy

For estimators $\widehat{\theta}$ and $\widetilde{\theta}$ for $\theta \in \mathbb{R}^1$

$$e_{(\widehat{\theta},\,\widetilde{\theta})}(\theta) = \frac{e_{\widehat{\theta}}(\theta)}{e_{\widetilde{\theta}}(\theta)} = \frac{\mathrm{var}_{\theta}(\widetilde{\theta})}{\mathrm{var}_{\theta}(\widehat{\theta})} \text{ is the relative efficiency of } \widehat{\theta} \text{ to } \widetilde{\theta}.$$

Then $e_{(\widehat{\theta},\widetilde{\theta})}(\theta) > 0$ and

$$e_{(\widehat{\theta},\,\widetilde{\theta})}(\theta)<1$$
 at $\theta\Longleftrightarrow \mathrm{var}_{\theta}(\widehat{\theta})>\mathrm{var}_{\theta}(\widetilde{\theta})$ at θ

$$e_{(\widehat{\theta},\widetilde{\theta})}(\theta) > 1 \text{ at } \theta \iff \text{var}_{\theta}(\widehat{\theta}) < \text{var}_{\theta}(\widetilde{\theta}) \text{ at } \theta$$

$$e_{(\widehat{\theta},\widetilde{\theta})}(\theta) = 1 \text{ at } \theta \Longleftrightarrow \operatorname{var}_{\theta}(\widehat{\theta}) = \operatorname{var}_{\theta}(\widetilde{\theta}) \text{ at } \theta$$

So $\widehat{\theta} \in \mathrm{UE}(\theta)$ dominates $\widetilde{\theta} \in \mathrm{UE}(\widehat{\theta})$ iff $e_{(\widehat{\theta}, \widetilde{\theta})}(\theta) \geq 1$ for all θ .

2. Asymptotically efficient estimators

(1) Asymptotically efficient estimators

 $\widehat{\theta}_n$ is an asymptotically efficient for $\theta \stackrel{def}{\iff} \widehat{\theta}_n \stackrel{p}{\longrightarrow} \theta$ and $Cov(\sqrt{n}\,\widehat{\theta}_n) \longrightarrow I^{-1}(\theta)$.

Comments: From efficient estimator to asymptotically efficient estimator the condition $E_{\theta}(\widehat{\theta}_n) = \theta$ changed to $\widehat{\theta}_n \stackrel{p}{\longrightarrow} \theta$ and the condition $Cov_{\theta}(\widehat{\theta}_n) = CRLB(\theta)$ changed to $n\operatorname{Cov}_{\theta}(\widehat{\theta}_n) \longrightarrow I^{-1}(\theta).$

The second condition can not be $Cov(\widehat{\theta}_n) \longrightarrow CRLB(\theta)$ since $CRLB(\theta) = [nI(\theta)]^{-1}$ depends on n. So we multiply both sides by n to cancel it on the right-hand side. and the left-hand side becomes $n \operatorname{Cov}(\widehat{\theta}_n) = \operatorname{Cov}(\sqrt{n} \ \widehat{\theta}_n)$.

(2) Asymptotically efficient estimator for $\theta \in R$

With
$$\theta \in R$$

$$\lim_{n \to \infty} \left[\operatorname{var}_{\theta}(\sqrt{n} \ \widehat{\theta}_{n}) \right] = I^{-1}(\theta) \text{ for all } \theta$$

$$\iff \lim_{n \to \infty} \left[n \cdot \operatorname{var}_{\theta}(\widehat{\theta}_{n}) \cdot I(\theta) \right] = 1 \text{ for all } \theta$$

$$\iff \lim_{n \to \infty} \frac{1}{n \cdot \operatorname{var}_{\theta}(\widehat{\theta}_{n}) \cdot I(\theta)} = 1 \text{ for all } \theta$$

$$\iff \lim_{n \to \infty} \frac{[nI(\theta)]^{-1}}{\operatorname{var}_{\theta}(\widehat{\theta}_{n})} = 1 \text{ for all } \theta$$

$$\iff \lim_{n \to \infty} e_{\widehat{\theta}_{n}}(\theta) \longrightarrow 1 \text{ for all } \theta.$$

1

So $\widehat{\theta}_n$ is an asymptotically efficient estimator for $\theta \in R$ iff $\widehat{\theta}_n$ is a consistent estimator for θ and $e_{\widehat{\theta}_n}(\theta) \longrightarrow 1$ for all θ .

(3) Chebyshev inequality

Suppose random variable $X \ge 0$. Then $P(X > \epsilon) \le \frac{E(X)}{\epsilon}$.

Proof. Let f(x) be the pdf of X. Then

$$P(X > \epsilon) = \int_{x > \epsilon} f(x) dx \le \int_{x > \epsilon} \frac{x}{\epsilon} f(x) dx \le \int_{x = \epsilon} \frac{x}{\epsilon} f(x) dx = \frac{E(X)}{\epsilon}.$$

(4) Theorem

If $\widehat{\theta}_n$ is efficient estimator for $\theta \in \mathbb{R}^k$, then $\widehat{\theta}_n$ is asymptotically efficient estimator for θ .

Proof. Note that $E_{\theta}(\widehat{\theta}_n) = \theta$ and $Cov_{\theta}(\widehat{\theta}_n) = CRLB(\theta) = \frac{I^{-1}(\theta)}{n}$.

$$\forall \epsilon > 0, \ P(\|\widehat{\theta}_n - \theta\| > \epsilon) = P(\|\widehat{\theta}_n - \theta\|^2 > \epsilon^2) \le \frac{E(\|\widehat{\theta}_n - \theta\|^2)}{\epsilon^2}$$

$$= \frac{E\{\operatorname{tr}[(\widehat{\theta}_n - \theta)'(\widehat{\theta}_n - \theta)]\}}{\operatorname{tr}[\operatorname{Cov}(\widehat{\theta}_n)]} = \frac{\operatorname{tr}\{E[(\widehat{\theta}_n - \theta)'(\widehat{\theta}_n - \theta)']\}}{\epsilon^2}$$

$$= \frac{\operatorname{tr}[\operatorname{Cov}(\widehat{\theta}_n)]}{\operatorname{tr}(I^{-1}(\theta))} = \frac{\operatorname{tr}(I^{-1}/n)}{\epsilon^2}$$

$$= \frac{\operatorname{tr}(I^{-1}(\theta))}{n\epsilon^2} \to 0 \text{ as } n \to \infty.$$

Thus $\widehat{\theta}_n \stackrel{p}{\longrightarrow} \theta$.

Thus
$$\theta_n \to 0$$
.
 $\operatorname{Cov}(\widehat{\theta}_n) = \operatorname{CRLB}(\theta) = \frac{I^{-1}(\theta)}{n} \Longrightarrow n \cdot \operatorname{Cov}_{\theta}(\widehat{\theta}_n) = I^{-1}(\theta)$.
So $\lim_{n \to \infty} \left[\operatorname{Cov}_{\theta}(\sqrt{n} \ \widehat{\theta}_n) \right] = I^{-1}(\theta)$.

So
$$\lim_{n\to\infty} \left[\operatorname{Cov}_{\theta}(\sqrt{n} \ \widehat{\theta}_n) \right]^n = I^{-1}(\theta)$$
.

Hence θ_n is asymptotically efficient estimator for θ .

3. More on asymptotically efficient estimators

(1) Theorem

If $E_{\theta}(\widehat{\theta}_n) = \theta$ and $\lim_{n \to \infty} [\text{Cov}_{\theta}(\sqrt{n} \ \widehat{\theta}_n)] = I^{-1}(\theta)$, then $\widehat{\theta}_n$ is asymptotically efficient estimator for θ .

Proof. Left as HW.

(2) Example

$$\widehat{\theta}_n = \begin{pmatrix} \overline{X}_n \\ S_n^2 \end{pmatrix}$$
 is BLUE for $\theta = \begin{pmatrix} \mu \\ \sigma^2 \end{pmatrix}$ in $N(\mu, \sigma^2)$ since $E_{\theta}(\widehat{\theta}_n) = \theta$ and $\widehat{\theta}_n$ is a function

of sufficient and complete statistic $S = \begin{pmatrix} \sum X_i \\ \sum X_i^2 \end{pmatrix}$

 $\widehat{\theta}_n$ is not an efficient estimator for θ since

$$Cov_{\theta}(\widehat{\theta}_n) = \begin{pmatrix} \frac{\sigma^2}{n} & 0\\ 0 & \frac{2\sigma^4}{n-1} \end{pmatrix} \neq \begin{pmatrix} \frac{\sigma^2}{n} & 0\\ 0 & \frac{2\sigma^4}{n} \end{pmatrix} = CRLB(\theta).$$

 $\widehat{\theta}_n$ is an asymptotically efficient estimator for θ since $E_{\theta}(\widehat{\theta})n)=\theta$ and

$$\lim_{n \to \infty} [\operatorname{Cov}_{\theta}(\sqrt{n} \ \widehat{\theta}_n)] = \lim_{n} n \begin{pmatrix} \frac{\sigma^2}{n} & 0 \\ 0 & \frac{2\sigma^4}{n-1} \end{pmatrix} = \begin{pmatrix} \sigma^2 & 0 \\ 0 & 2\sigma^4 \end{pmatrix} = I^{-1}(\theta).$$

L05 Convergence in distributions

1. Convergence in distributions

(1) Definition

Let $F_n(x) = P(X_n \le x \text{ component wise})$ and $F(x) = P(X \le x \text{ component wise})$ be the cumulative distribution functions of X_n and X. X_n converges to X in distributions denoted as $X_n \xrightarrow{d} X$ if $F_n(x) \longrightarrow F(x)$ at all continuity point x for F(x).

(2) Sufficient and necessary condition

$$X_n \xrightarrow{d} X \iff P(X_n \in G) \longrightarrow P(X \in G)$$
 for all open sets G .

(3) Usage

If $X_n \stackrel{d}{\longrightarrow} X$ and X is a continuous random vector with continuous cdf F(x), then $P(X_n \in G) \longrightarrow P(X \in G)$ for all $G, E(X_n) \longrightarrow E(X)$ and $Cov(X_n) \longrightarrow Cov(X)$. So $P(X_n \in G) \approx P(X \in G), E(X_n) \approx E(X)$ and $Cov(X_n) \approx Cov(X)$.

2. Relations

(1) From convergence in probability to that in distribution

$$X_n \stackrel{p}{\longrightarrow} X \Longrightarrow X_n \stackrel{d}{\longrightarrow} X.$$

(2) For $X_n \xrightarrow{d} X$ there is no base to consider $X_n \xrightarrow{p} X$.

 $X_n \xrightarrow{p} X \iff P(\|X_n - X\| > \epsilon) \longrightarrow 0$ for all ϵ . So X and X_i must be defined in the same probability space for i = 1, 2, ...

But with $X_n \xrightarrow{d} X \iff P(X_n \in G) \longrightarrow P(X \in G), X, X_1, X_2, ...$ could be in different probability space so that there is no base to consider $P(||X_n - X|| > \epsilon)$.

(3) A spacial case

With non-random C, $X_n \xrightarrow{p} C \iff X_n \xrightarrow{d} C$.

Non-random C can be regarded as a variable defined in every probability space so that even if $X_1, ..., X_n$ are in the different probability spaces, but $P(||X_n - C|| > \epsilon)$ can be calculated.

(4) Skorokhod representation

For $X_n \stackrel{d}{\longrightarrow} X$, using inverse of cdf and uniform distributions one can create $Y, Y_1, ...$ in a probability space such that $Y_n \stackrel{d}{=\!\!\!=\!\!\!=} X_n$ and $Y \stackrel{d}{=\!\!\!=\!\!\!=} X$ and $Y_n \stackrel{a.s.}{\longrightarrow} Y$.

3. Properties

- (1) $X_n \xrightarrow{d} X \iff g(X_n) \xrightarrow{d} g(X)$ for all continuous $g(\cdot)$
 - \Rightarrow : By Skrokohod representation,

If $X_n \xrightarrow{d} X$, then there exist Y_n and Y such that $X_n \xrightarrow{d} Y_n \xrightarrow{a.s.} Y \xrightarrow{d} X$. So $g(X_n) \xrightarrow{d} g(Y_n) \xrightarrow{a.s.} g(Y) \xrightarrow{d} g(X)$. Thus $g(X_n) \xrightarrow{d} g(X)$.

 \Leftarrow : Take q(x) = x.

Comment: The above property is shared by both almost sure convergence and the convergence in probability. But here is a special $g(\cdot)$,

$$X_n \xrightarrow{d} X \iff \alpha' X_n \xrightarrow{d} \alpha' X$$
 for all vector α .

- (2) $X_n \xrightarrow{d} X \iff X_{n_k} \xrightarrow{d} X$ for all subsequence X_{n_k} . Comment: This property is also common for the convergence w.p.1 and in probability.
- (3) $\begin{pmatrix} X_n \\ Y_n \end{pmatrix} \xrightarrow{d} \begin{pmatrix} X \\ Y \end{pmatrix} \Longrightarrow X_n \xrightarrow{d} X \text{ and } Y_n \xrightarrow{d} Y$

Proof. $X_n = g(X_n Y_n)$ is a continuous function. Conclusion follows from (1).

Comment: This property is common for convergence wp1 and in probability.

(4) For $\begin{pmatrix} X_n \\ Y_n \end{pmatrix}$ and $\begin{pmatrix} X \\ Y \end{pmatrix}$, $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} Y$ may not imply $\begin{pmatrix} X_n \\ Y_n \end{pmatrix} \xrightarrow{d} \begin{pmatrix} X \\ Y \end{pmatrix}$.

Example: For $\begin{pmatrix} X_n \\ Y_n \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 8 & 2 \\ 2 & 5 \end{pmatrix} \end{pmatrix}$ and $\begin{pmatrix} X \\ Y \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 8 & 0 \\ 0 & 5 \end{pmatrix} \end{pmatrix}$,

 $X_n \sim N(0, 8) \xrightarrow{d} X \sim N(0, 8)$ and $Y_n \sim N(0, 5) \xrightarrow{d} Y \sim N(0, 5)$.

But $\begin{pmatrix} X_n \\ Y_n \end{pmatrix} \xrightarrow{d} \begin{pmatrix} X \\ Y \end{pmatrix}$.

(5) Slutsky theorem

For $\begin{pmatrix} X_n \\ Y_n \end{pmatrix} \in \mathbb{R}^2$ and $\begin{pmatrix} X \\ C \end{pmatrix} \in \mathbb{R}^2$, if $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} C$, then $X_n + Y_n \xrightarrow{d} X + C$.

(6) With $\begin{pmatrix} X_n \\ Y_n \end{pmatrix}$ and $\begin{pmatrix} X \\ C \end{pmatrix}$, if $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} C$, then $\begin{pmatrix} X_n \\ Y_n \end{pmatrix} \xrightarrow{d} \begin{pmatrix} X \\ C \end{pmatrix}$.

Proof: By the sufficient and necessary condition in the comment after (1),

we need to show $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \begin{pmatrix} X_n \\ Y_n \end{pmatrix} \xrightarrow{d} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \begin{pmatrix} X \\ C \end{pmatrix}$ for all vector $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$

 $\begin{array}{c} X_n \stackrel{d}{\longrightarrow} X \Longrightarrow \alpha' X_n \stackrel{d}{\longrightarrow} \alpha' X \text{ for all vector } \alpha \\ Y_n \stackrel{d}{\longrightarrow} C \Longrightarrow \beta' Y_n \stackrel{d}{\longrightarrow} \beta' C \text{ for all vector } \beta \end{array}$

By Slutsky theorem, $\alpha' X_n + \beta' Y_n \xrightarrow{d} \alpha' X + \beta' C$. Thus $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \begin{pmatrix} X_n \\ Y_n \end{pmatrix} \xrightarrow{d} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \begin{pmatrix} X \\ C \end{pmatrix}$ for all vector $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$

Corollary: $g(X_n Y_n) \xrightarrow{d} g(X, C)$ for all continuous $g(\cdot, \cdot)$.

Ex: If $X_n \xrightarrow{d} X$, show that $\frac{2n}{n+k} X_n \xrightarrow{d} 2X$.

Proof. $X_n \xrightarrow{d} X$ and $\frac{2n}{n+k} \longrightarrow 2$. So $\begin{pmatrix} X_n \\ \frac{2n}{n-k} \end{pmatrix} \xrightarrow{d} \begin{pmatrix} X \\ 2 \end{pmatrix}$. Hence $\frac{2n}{n+k} X_n \xrightarrow{d} 2X$.